Robustness of convex optimization with application to controled Markov chains
نویسندگان
چکیده
We present two stability results in this paper. We rst obtain suucient conn ditions for the continuity of optimal values and solutions of convex programs in general vector spaces, as well as some types of robustness of some sub-optimal solutions. We then use these results in order to establish a new result in stochastic dynamic control of discrete event systems (known as constrained Markov Decision Processes): the convergence of the value and optimal policies of the problem with discounted costs, to the ones for the problem with expected average cost. Robustesse de l'optimisation convexe avec applications au contrrle de chaanes de Markov RRsumm : Nous prrsentons dans ce papier deux rrsultats de stabilitt. D'abord, nous trouvons des conditions suusantes pour avoir la continuitt de la valeur optimale et des solutions des programmes convexes dans des espaces vectoriels ggnnraux, ainsi qu'un type de robustesse pour certaines solutions sub-optimales. Ensuite, nous utilisons ces rrsultats pour tablir un nouveau rrsultat en contrrle dynaa mique stochastique de systtmes vnements discrets (connu sous le nom de Processus de DDcision Markoviens): la convergence de la valeur et des politiques optimales du probllme avec coot pnaliss vers celles du probllme avec coot moyen.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملProbabilistic Guidance of Swarms using Sequential Convex Programming∗
In this paper, we integrate, implement, and validate formation flying algorithms for large number of agents using probabilistic swarm guidance with inhomogeneous Markov chains and model predictive control with sequential convex programming. Using an inhomogeneous Markov chain, each agent determines its target position during each time step in a statistically independent manner while the swarm c...
متن کاملContinuity of Optimal Values and Solutions for Control of Markov Chains with Constraints
We consider in this paper constrained Markov decision processes. This type of control model has many applications in telecommunications and other fields [E. Altman and A. Shwartz, IEEE Trans. Automat. Control, 34 (1989), pp. 1089–1102, E. A. Feinberg and M. I. Reiman, Probab. Engrg. Inform. Sci., 8 (1994), pp. 463–489, A. Hordijk and F. Spieksma, Adv. in Appl. Probab., 21 (1989), pp. 409–431, A...
متن کاملIdentification of Markov Chains From Distributional Measurements and Applications to Systems Biology ?
In this paper, we are concerned with doing system identification for biological systems using time series distributional measurements and Markov chain models. By distributional measurements, we mean measurements provided by assays such as flow cytometry or FISH (fluorescence in situ hybridization) that allow us to make the same single cell measurements over a number of different cells. We focus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996